Extensions 1→N→G→Q→1 with N=D5×Dic3 and Q=C22

Direct product G=N×Q with N=D5×Dic3 and Q=C22
dρLabelID
C22×D5×Dic3240C2^2xD5xDic3480,1112

Semidirect products G=N:Q with N=D5×Dic3 and Q=C22
extensionφ:Q→Out NdρLabelID
(D5×Dic3)⋊1C22 = D2025D6φ: C22/C1C22 ⊆ Out D5×Dic31204(D5xDic3):1C2^2480,1093
(D5×Dic3)⋊2C22 = D2013D6φ: C22/C1C22 ⊆ Out D5×Dic31208-(D5xDic3):2C2^2480,1101
(D5×Dic3)⋊3C22 = D2014D6φ: C22/C1C22 ⊆ Out D5×Dic31208+(D5xDic3):3C2^2480,1102
(D5×Dic3)⋊4C22 = C15⋊2+ 1+4φ: C22/C1C22 ⊆ Out D5×Dic31204(D5xDic3):4C2^2480,1125
(D5×Dic3)⋊5C22 = C2×D205S3φ: C22/C2C2 ⊆ Out D5×Dic3240(D5xDic3):5C2^2480,1074
(D5×Dic3)⋊6C22 = C2×D20⋊S3φ: C22/C2C2 ⊆ Out D5×Dic3240(D5xDic3):6C2^2480,1075
(D5×Dic3)⋊7C22 = S3×C4○D20φ: C22/C2C2 ⊆ Out D5×Dic31204(D5xDic3):7C2^2480,1091
(D5×Dic3)⋊8C22 = D2024D6φ: C22/C2C2 ⊆ Out D5×Dic31204(D5xDic3):8C2^2480,1092
(D5×Dic3)⋊9C22 = S3×D4×D5φ: C22/C2C2 ⊆ Out D5×Dic3608+(D5xDic3):9C2^2480,1097
(D5×Dic3)⋊10C22 = D5×D42S3φ: C22/C2C2 ⊆ Out D5×Dic31208-(D5xDic3):10C2^2480,1098
(D5×Dic3)⋊11C22 = S3×D42D5φ: C22/C2C2 ⊆ Out D5×Dic31208-(D5xDic3):11C2^2480,1099
(D5×Dic3)⋊12C22 = D30.C23φ: C22/C2C2 ⊆ Out D5×Dic31208+(D5xDic3):12C2^2480,1100
(D5×Dic3)⋊13C22 = S3×Q82D5φ: C22/C2C2 ⊆ Out D5×Dic31208+(D5xDic3):13C2^2480,1109
(D5×Dic3)⋊14C22 = D2016D6φ: C22/C2C2 ⊆ Out D5×Dic31208-(D5xDic3):14C2^2480,1110
(D5×Dic3)⋊15C22 = C2×Dic5.D6φ: C22/C2C2 ⊆ Out D5×Dic3240(D5xDic3):15C2^2480,1113
(D5×Dic3)⋊16C22 = C2×C30.C23φ: C22/C2C2 ⊆ Out D5×Dic3240(D5xDic3):16C2^2480,1114
(D5×Dic3)⋊17C22 = C2×D5×C3⋊D4φ: C22/C2C2 ⊆ Out D5×Dic3120(D5xDic3):17C2^2480,1122
(D5×Dic3)⋊18C22 = S3×C2×C4×D5φ: trivial image120(D5xDic3):18C2^2480,1086

Non-split extensions G=N.Q with N=D5×Dic3 and Q=C22
extensionφ:Q→Out NdρLabelID
(D5×Dic3).1C22 = D20.38D6φ: C22/C1C22 ⊆ Out D5×Dic32404(D5xDic3).1C2^2480,1076
(D5×Dic3).2C22 = D20.39D6φ: C22/C1C22 ⊆ Out D5×Dic32404-(D5xDic3).2C2^2480,1077
(D5×Dic3).3C22 = C15⋊2- 1+4φ: C22/C1C22 ⊆ Out D5×Dic32408-(D5xDic3).3C2^2480,1096
(D5×Dic3).4C22 = D20.29D6φ: C22/C1C22 ⊆ Out D5×Dic32408-(D5xDic3).4C2^2480,1104
(D5×Dic3).5C22 = F5×Dic6φ: C22/C1C22 ⊆ Out D5×Dic31208-(D5xDic3).5C2^2480,982
(D5×Dic3).6C22 = Dic65F5φ: C22/C1C22 ⊆ Out D5×Dic31208-(D5xDic3).6C2^2480,984
(D5×Dic3).7C22 = F5×C3⋊D4φ: C22/C1C22 ⊆ Out D5×Dic3608(D5xDic3).7C2^2480,1010
(D5×Dic3).8C22 = C3⋊D4⋊F5φ: C22/C1C22 ⊆ Out D5×Dic3608(D5xDic3).8C2^2480,1012
(D5×Dic3).9C22 = C2×D5×Dic6φ: C22/C2C2 ⊆ Out D5×Dic3240(D5xDic3).9C2^2480,1073
(D5×Dic3).10C22 = D5×C4○D12φ: C22/C2C2 ⊆ Out D5×Dic31204(D5xDic3).10C2^2480,1090
(D5×Dic3).11C22 = S3×Q8×D5φ: C22/C2C2 ⊆ Out D5×Dic31208-(D5xDic3).11C2^2480,1107
(D5×Dic3).12C22 = C4⋊F53S3φ: C22/C2C2 ⊆ Out D5×Dic31208(D5xDic3).12C2^2480,983
(D5×Dic3).13C22 = (C4×S3)⋊F5φ: C22/C2C2 ⊆ Out D5×Dic31208(D5xDic3).13C2^2480,985
(D5×Dic3).14C22 = C4×S3×F5φ: C22/C2C2 ⊆ Out D5×Dic3608(D5xDic3).14C2^2480,994
(D5×Dic3).15C22 = S3×C4⋊F5φ: C22/C2C2 ⊆ Out D5×Dic3608(D5xDic3).15C2^2480,996
(D5×Dic3).16C22 = C2×Dic3×F5φ: C22/C2C2 ⊆ Out D5×Dic3120(D5xDic3).16C2^2480,998
(D5×Dic3).17C22 = C22⋊F5.S3φ: C22/C2C2 ⊆ Out D5×Dic31208-(D5xDic3).17C2^2480,999
(D5×Dic3).18C22 = C2×Dic3⋊F5φ: C22/C2C2 ⊆ Out D5×Dic3120(D5xDic3).18C2^2480,1001
(D5×Dic3).19C22 = D5×Q83S3φ: trivial image1208+(D5xDic3).19C2^2480,1108

׿
×
𝔽